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The CIauchy problem for a system of equations which described the undetached motion of a point mass along a string is considered. 
The problem can be reduced to sn initial-value problem for two integro-differential equations. If the initial velocities of the points 
of the string are zero, the problem reduces to the Cauchy problem for a system of three first-order ordinary differential equations. 
The problem with zero initial displacements is much simpler. The case of an impact along the string is considered in detail. 
8 1997 Elsevier Science Ltd. All rights reserved. 

The essence of the concepts of wave pressure, wave momentum and so on becomes very clear from an analysis of 
the consistent motion of objects along elastic strings. While the problem of the motion of a point mass along an 
infinite vibrating string is easy to formulate, it involves the main difficuities of problems of this kind: variable 
boundaries and non-linearity. 

1. A point mass is a mathematical idealization of a sphere of small radius with a narrow channel (a “head”) through 
which the string passes without friction. The equations which describe this dynamical system have the form [l-5] 

v, =A& =o. c=JNl 

mV(t,f(r))=p(c*-i*)[V,], Ini=-;cc*-i*mf1 

(l-1) 

The initial conditions are assumed to be given on the entire real axis 

V(O,x) = cp(x), v,(O,x) = wuxx) (l-2) 

where N is the tension in the string, p is the linear density, square brackets are used to denote the difference between 
the limiting values on the right and left of the boundaryx = r(t) of the expression that they contain, v(t, f(f)) is the 
transverse deviation of the bead, Z(r) is its longitudinal displacement along the string, a dot above a symbol denotes 
an ordinary derivative with respect to time, and the subscripts f and x denote the partial derivatives with respect to 
time and the space variable respectively. ‘lb (1.1) and (1.2) we add the following initial conditions for a point mass 

r(o)=f,, i(o)=w. vwo)=cpuoh ywo)=yru,) 

2. The computations can be simplified by changing to the characteristic variables 5 = x - ct, I) = x + ct. Suppose 
that the longitudinal displacement of the bead is mapped onto the plane of the characteristic variables and that 
the coordinates of the bead in that plane at time t are 5, n (the point P(& 11) in Fig. 1). From P(& I)) we draw the 
characteristics of the wave equation as far as the intersection with the straight line n = 5 on which the initial 
conditions are given. Using Gauss’ formula 

after integrating along the contours of figures APC and CPB (Fig. l), returning to the original variables x, t and c 
and taking the initial conditions (1.2) into account we obtain 

e;V;dt+fp-~=V(r,f(r))-~(f-cr) -f,- y)& 
0 ‘y 

, c 

cjv~dr+ff~~v.tdr=-v(r,l(t))+~(z+ct) +; 
0 

’ fp)* (2.1) 
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zi 
Fig. 1. 

where a minus superscript denotes that the limiting value is taken on the left, while a plus superscript denotes that 
it is taken on the right of the curve CP. 

The fact that the string does not break at the bead can be expressed by the formula 

F+ + v-i = v; + v;i (2.2) 

Using expression (2.2) and subtracting the first relation of (2.1) from the second, we obtain 

I i2 

I( 1 

C-- 
C 

[V,ldr=-2V(I,t)+cp(l+cr)+cp(l-ct)+- 
0 

1 :$ ww (2.3) 

We now integrate the second equation of (1.1) once, and replace the integral on its right-hand side by the right- 
hand side of (2.3). As a result, we can express this integral in terms of functions of the initial condition and 
V(l, t). We obtain 

(2.4) 

The transverse deviation of the point mass is easily found from (2.4) when the longitudinal displacement is known. 
We now derive an equation for the longitudinal displacement. Differentiating Eqs (2.1) with respect to time and 

then adding them using formula (2.2), we obtain 

i2 

( I 
c-- (v;+v;)=-: Ci(f,r)+cp+(i,f,r)+~-(i,f,t) 

c 
(2.5) 

**(i,f,r)=f~~(f*~r)(ifc)+~yr(ff~r)(if=) 
C 

where the prime denotes the ordinary derivative. 
We now differentiate Eq. (2.3) with respect to time, multiply its left- and right-hand sides by the respective 

parts of Eq. (2.9, and then multiply by p/[2(c2 - i2)]. The left-hand side of the resulting equation is the same as 
the right-hand side of the last equation of system (l.l), which describes the longitudinal displacement of the bead. 
Hence, for the longitudinal acceleration of the point mass we have the expression 

2 
i’=- 

*m($-i2)( 
-2~(f,f)+cD+(i,f,r)-9-(i,f,f)) - 

I . 
21 ir(f,r)+cp+(i,r,r)+~-(i,f,f) (2.6) 

C 

Thus we have a system of two related equations (2.4) and (2.6) from which to find the longitudinal and transverse 
displacements of the bead. 

3. We note that if the string is initially released without communicating velocities to its points, a system of two 
ordinary differential equations is obtained. If the dimensionless number pcT&n is small (To is the characteristic 
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time), the acceleration of the point mass is described approzimately by the expression 

x=l+ct, C=l-ct 

which, for zero initial velocities of points of the string in particular, takes the simple form 

(3-I) 

Some difficulty arises in using (3.1) to find displacements of the bead for small I, owing to the fact that its right- 
hand side contains an implicit function of 1. 

4. The system of equations (2.4) and (2.6) becomes much simpler in the rather interesting case of a hammer 
blow along the segment El, x2] (to tiz our ideas, we will assume that this segment lies to the left of the bead). In 
this case the initial conditions take the form 

V(O,x)=O, Vr(O,x)=yoH(x-x,)H(x*-x) 

where H(z) is the Heaviside unit step function. The system takes the form 

~+~v=~yroH(x2-~){12-~(~-XI)-XIH(XI-~)}, C=f-cr 
m m 

i’=- PC2 
{’ 
Q’p 

2m(c* -i*) c 
*-~H(S-x,)H(x*-r)(i-c)* 

1 

Figure 2 shows the relation between the velocity of the bead i /c and dimensionless time z = tc/(z2 -ni) for different 
vahw of D = p(nl -x1)/m, when the other dimensionless term E = v/c is constant, equal to 0.5. If D < 1 the 
velocity of the bead gradually increases, approaching a certain constant value. The reason for this is that once the 
wave has caught up with the point mass, it ceases to act on it. The bead velocity becomes constant at a value of D 
of unity or more, but non-monotone@ there is a small segment of drag at the trailing edge of the wave. This is 
rather interesting, if the dynamic interaction of the bead and string is explained in terms of the popular concept 
of wave pressure. Figure 3 possibly makes this even clearer. The four curves show how the bead gathers speed 
when the parameter D = 1 is fixed and E takes different values. The drag segment is very evident on the curve for 
E = 2. It can be attributed to a kink in the derivative of Vwith respect tox on the trailing edge of the wave, where 
for a short time the difference of the squares of the derivatives to the right and left becomes positive. 

Fig. 2. Fig. 3. 



684 N. V. Derendyayev and I. N. Soldatov 

REFERENCES 
1. KAZI-IAYE~ V V and UTIUN, G. A, The motion of a mass along a string under the effect of wave pressure. In Diffennial 

and Integral Equations. Gor’k. Gos. Univ., Gorky, 1989,112-117. 
2. VFSNITSKII, A. I. and UTKIN, G. A, The motion of a body along a string under the effect of wave pressure. DoH AM 

Nauk SSSR. 1988,302,278-280. 
3. VESNITSKII, A. I., KAPLAN, L. Ye. and UTKIN, G. A., Laws and changes of energy and momentum for one-dimensional 

systems with moving clampings and loads. P&r! Mar. Me&, 1983,7,863-866. 
4. KOSHELE~ S. V and UTIUN, G. A, The existence, uniqueness and some properties of the solution of the problem of a 

bead on a string. In Wave Robfern ofMechanics, Izd. Nizhegorod. Univ., Nizhnii Novgorod, 1992,3-. 
5. UTKIN, G. A., Formuiation of problems of the dynamics of elastic systems and objects that move along them. In Wave Dynutnics 

of Machines. Nauka, Moscow, 1991,4-14. 

Tmnskzted by R.L. 


